Background

- ROS1 oncogenic fusions are observed in ~1% of NSCLC patients as well as in cholangiocarcinomas, glioblastomas, ovarian, gastric, and colorectal cancers.
- CNS metastasis occurs in 20–30% ROS1 TKI-naïve and in up to 50% pretreated ROS1-positive NSCLC patients.
- Resistance to first-generation ROS1 inhibitors often occurs with secondary mutations such as ROS1 G2032R solvent front mutation.
- Taletrectinib, a next-generation selective, resistant ROS1 tyrosine kinase inhibitor, is developed for:
 - exhibits resistance to first-generation ROS1 inhibitors
 - addresses CNS metastasis
 - improves efficacy and safety profile in ROS1-positive NSCLC patients
 - combines specific ROS1-related CNS adverse events by selectively inhibiting ROS1 over TKRs.

Methods

The ongoing clinical study is a multicenter, open-label, single-arm, phase 2 study of taletrectinib in Chinese ROS1-positive NSCLC patients.

The study consists of two parts:

Part 1: A lead-in dose titration period in which taletrectinib was only administered with 600mg QD (N=3) and 600QD (N=3) dose.

Part 2: All patients are orally administered with 600mg QD regimen in both the ROS1 TKI naïve group and the ROS1 TKI pretreated group.

Efficacy in Patients with Brain Metastases

Demographic and Baseline Characteristics

<table>
<thead>
<tr>
<th>Category</th>
<th>Male</th>
<th>CRizotinib-Positve (%)</th>
<th>Total</th>
<th>CRizotinib-Positve (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>28 (81.4%)</td>
<td>20 (62.5%)</td>
<td>48 (44.1%)</td>
<td>44 (44.1%)</td>
</tr>
<tr>
<td>Female</td>
<td>12 (38.6%)</td>
<td>6 (17.5%)</td>
<td>18 (15.9%)</td>
<td>30 (15.9%)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>55 (38-75)</td>
<td>39 (35-65)</td>
<td>54 (42-71)</td>
<td>55 (38-75)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>60 (45-75)</td>
<td>55 (45-75)</td>
<td>60 (45-75)</td>
<td>60 (45-75)</td>
</tr>
<tr>
<td>Histological Subtype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>64 (63%)</td>
<td>62 (61%)</td>
<td>126 (63%)</td>
<td>126 (63%)</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Lymphoepitheliocarcinoma</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (3%)</td>
<td>3 (3%)</td>
<td>6 (3%)</td>
<td>6 (3%)</td>
</tr>
<tr>
<td>Stages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locally Advanced</td>
<td>42 (41%)</td>
<td>35 (35%)</td>
<td>77 (39%)</td>
<td>77 (39%)</td>
</tr>
<tr>
<td>Metastatic</td>
<td>40 (38%)</td>
<td>40 (35%)</td>
<td>80 (40%)</td>
<td>80 (40%)</td>
</tr>
<tr>
<td>Prior Anti-TCIT treatment</td>
<td>Yes</td>
<td>77 (76%)</td>
<td>120 (60%)</td>
<td>197 (97%)</td>
</tr>
<tr>
<td>Brain Metastasis (IRC assessed)</td>
<td>No</td>
<td>50 (49%)</td>
<td>30 (15%)</td>
<td>80 (39%)</td>
</tr>
<tr>
<td>Brain Metastasis (IRC assessed)</td>
<td>Yes</td>
<td>50 (49%)</td>
<td>132 (65%)</td>
<td>182 (87%)</td>
</tr>
</tbody>
</table>

Efficacy in CRizotinib-Positive Patients

- **CRizotinib**
 - 92.5% (95% CI: 81%–100%)
 - SD: 2 (21%)
 - CR: 6 (6%)
 - BOR: 1 (1%)

- **Taletrectinib**
 - 95.4% (95% CI: 89%–100%)
 - SD: 0 (0%)
 - CR: 14 (12.8%)
 - BOR: 0 (0%)

References

Efficacy in CRizotinib-Naïve Patients

- **CRizotinib**
 - 92.5% (95% CI: 81%–100%)
 - SD: 2 (21%)
 - CR: 6 (6%)
 - BOR: 1 (1%)

- **Taletrectinib**
 - 95.4% (95% CI: 89%–100%)
 - SD: 0 (0%)
 - CR: 14 (12.8%)
 - BOR: 0 (0%)

Summary

Taletrectinib is a potential best-in-class next-generation ROS1 inhibitor for treating both ROS1 TKI-naïve and pre-treated NSCLC patients.

- High ORRs observed in 5% and 5% of patients.
- Excellent potency against ROS1 activating mutations including G2032R solvent front mutation.
- Strong anti-proliferative activity in patients. Unphased preclinical data showed better brain penetration and intracranial activity than competitors, suggesting potentially longer-tail in efficacy for brain metastatic patients.
- Safe tolerability profile; AE results showed low-dose select inhibition of ROS1 over TRKB by taletrectinib may help significantly reduce TRKB-stabilizing (CRizotinib-Positive) NSCLC metastases.